International Journal of Theoretical Physics, Vol. 39, No. 9, 2000

Hamilton Spaces of Order $k \geq 1$

Radu Miron1

Received November 10, 1999

A suitable "dual" for the *k*-acceleration bundle $(T^k M, \pi^k, M)$ is the fibered bundle $(T^{k-1}M \times_M T^*M)$. The mentioned bundle carries a canonical presymplectic structure and *k* canonical Poisson structures. By means of this "dual" we define the notion of Hamilton spaces of order *k*, whose total space consists of points *x* of the configuration space *M*, accelerations of order $1, \ldots,$ $k-1$, $y^{(1)}$, ..., $y^{(k-1)}$, and momenta *p*. Some remarkable Hamiltonian systems are pointed out. There exists a Legendre mapping from the Lagrange spaces of order *k* to the Hamilton space of order *k*.

INTRODUCTION

The notion of a Hamilton space was introduced by the author in refs. 4 and 5. It refers to a pair $H^n = (M, H(x, p))$, where *M* is a smooth *n*dimensional manifold and *H* is a regular Hamiltonian, that is, a smooth function on the cotangent manifold *T***M*, whose Hessian with respect to the momenta p_i is nonsingular. The space H^n has a canonical symplectic structure and, accordingly, a canonical Poisson structure. The regularity of the Hamiltonian *H* allows us to view the space H^n as the dual, via a Legendre mapping, of a Lagrange space $L^n = (M, L(x, y))$ [1, 5, 8, 10].

The notion of Lagrange space of higher order $k \ge 1$, $L^{(k)n} = (M, L)$, was defined some years ago [7], *L* being a regular Lagrangian of order *k*. But up to now no definition for the notion of higher order Hamilton space has been proposed. The reason is that it is not simple to find a *dual* of a Lagrange space of order k , $L^{(k)n}$. Here, duality is not algebraic, but refers to the existence of a local diffeomorphism (a Legendre mapping) between two spaces.

1Faculty of Mathematics, "Al. I. Cuza" University Iasi, Iasii 6600, Romania; e-mail: rmiron@uaic.ro

2327

0020-7748/00/0900-2327\$18.00/0 q 2000 Plenum Publishing Corporation

In the present paper we propose a suitable "dual" of the *k*-acceleration bundle T^kM . This is the fibered bundle $T^{k-1}TM \times_M T^*M$ over M. We show that the total space of the latter has a canonical presymplectic structure as well as *k* canonical Poisson structures. Thus the notion of a higher order Hamiltonian space appears in a natural way. It is a pair $H^{(k)n} = (M, H)$, where *H*: $T^{k-1}LM \times_M T^*M \to R$ is a regular Hamiltonian depending on the point $x \in M$, the accelerations of order $1, 2, \ldots, k-1, y^{(1)}, \ldots, y^{(k-1)}$, and the momenta $p \in T^*M$. The spaces $H^{(k)n}$ have the following important properties:

- (a) dim $H^{(k)n} = \dim L^{(k)n}$.
- (b) $H^{(k)n}$ has a canonical presymplectic structure and a number *k* of canonical Poisson structures.
- (c) The spaces $H^{(k)n}$ and $L^{(k)n}$ are local diffeomorphic, via a Legendre transformation.

Of course, these properties hold in the case $k = 1$. The geometry of the Hamilton spaces of order $k \ge 1$ is a natural extension of the geometry of Hamilton spaces $H^n = (M, H(x, p)).$

1. THE DUAL OF THE *k***-OSCULATING BUNDLE**

Let *M* be a real, C^{∞} -differentiable manifold *M* of dimension *n* and (*TM*, π , *M*), (*T***M*, π ^{*}, *M*) its tangent and cotangent bundle, respectively. We consider the bundle of accelerations of order *k*, (T^kM, π^k, M) , which is identified with the osculating bundle of order *k*, Osc^kM , π^k , *M*) [8]. The points $u \in Osc^kM$ are of the form $u = (x, y^{(1)}, \ldots, y^{(k)})$ with the canonical coordinates $(x^i, y^{(1)i}, \ldots, y^{(k)i})$. Latin indices *i*, *j*, *k*, ... run over the set {1, $2, \ldots, n$, and the summation convention will be used.

For the bundles $(Osc^{k-1}M, \pi^{k-1}, M)$ and (T^*M, π^*, M) the fibered product

$$
(Osc^{k-1}M \times_M T^*M, \pi^{*k}, M) \tag{1.1}
$$

can be considered. The projection π^{*k} : $Osc^{*k}M \rightarrow M$, where $Osc^{*k}IM =$ $Osc^{k-1}XM \times_M T^*M$, is given by $\pi^{*k}(x, y^{(1)}, \ldots, y^{(k-1)}, p) = x$. The points (x, p) belong to the manifold T^*M and their local coordinate are (x^i, p_i) .

Thus, a point $u = (x, y^{(1)}, \ldots, y^{(k-1)}, p) \in Osc^{*k}M$ consists of a point *x*, accelerations $y^{(1)}$, ..., $y^{(k-1)}$ of order 1, ..., $k-1$, and a momentum *p* (using terms from in analytical mechanics).

The manifold $Osc^{*k}M$ will be called the "dual space" of the total space of the *k*-osculating bundle $Osc^{k}M$. We say that $Osc^{k}M$ and $Osc^{*k}M$ are dual to each other since between them there exists a local Legendre diffeomorphism. In this sense and not in an algebraic one, we say that the bundle $(Osc^{*k}M,$

Hamilton Spaces of Order $k \ge 1$ 2329

 π^{*k} , *M*) is dual to the bundle (*Osc*^k, π^{k} , *M*). For $k = 1$, (*Osc*^{*1}*M*, π^{*1} , *M*) is identified with the cotangent bundle (T^*M, π^*, M) .

The following diagram, where the arrows indicate natural projections, is commutative:

$$
Osc^{k-1}M \downarrow \qquad \searrow
$$
\n
$$
Osc^{k-1}M \downarrow \qquad T^*M
$$
\n
$$
M
$$

A change of local coordintes on the manifold $Osc*kM$ is given by

$$
\tilde{x}^{i} = \tilde{x}^{i}(x^{1}, \dots, x^{n}), \qquad \det\left(\frac{\partial \tilde{x}^{i}}{\partial x^{j}}\right) \neq 0
$$

$$
\tilde{y}^{(1)i} = \frac{\partial \tilde{x}^{i}}{\partial x^{j}} y^{j}
$$

$$
\cdots (k-1)\tilde{y}^{(k-1)i} = \frac{\partial \tilde{y}^{(k-2)i}}{\partial x^{j}} y^{(1)j} + \cdots + (k-1)\frac{\partial \tilde{y}^{(k-2)i}}{\partial y^{(k-2)j}} y^{(k-1)j} \quad (1.2)
$$

$$
\tilde{p}_{i} = \frac{\partial x^{j}}{\partial \tilde{x}^{i}} p_{j}
$$

and the following identities hold [7]:

$$
\frac{\partial \tilde{y}^{(\alpha)i}}{\partial x^j} = \frac{\partial \tilde{y}^{(\alpha+1)}}{\partial y^{(1)j}} = \dots = \frac{\partial \tilde{y}^{(k-1)i}}{\partial y^{(k-1-\alpha)j}}; \qquad \alpha = 0, \dots, k-2; \quad y^{(0)} = x
$$
\n(1.2')

Using formulas (1.2), we can introduce the following differential forms on the manifold *Osc***^k M*:

$$
\omega = p_i \, dx^i \tag{1.3}
$$

$$
\theta = d\omega = dp_i \wedge dx^i
$$

From (1.2) it follows that $\tilde{p}_i d\tilde{x}_i = p_i dx^i$. Thus the following assertions are clear.

Theorem 1.1.

- 1. The forms ω and θ are globally defined on $Osc^{*k}M$.
- 2. $d\theta = 0$, rank $\|\theta\| = 2n$.
- 3. θ is a canonical presymplectic structure on the manifold $Osc*kM$.

Let us consider the systems of Poisson brackets: for any $f, g \in \mathcal{F}$ (*Osc***^k M*),

$$
\{f, g\}_{\alpha} = \frac{\partial f}{\partial y^{(\alpha)i}} \frac{\partial g}{\partial p_i} - \frac{\partial g}{\partial y^{(\alpha)i}} \frac{\partial f}{\partial p_i}, \qquad \alpha = 0, 1, \dots, k - 1; \quad y^{(0)} = x
$$
\n(1.4)

Theorem 1.2. Every bracket $\{\cdot\}_\alpha$ ($\alpha = 0, \ldots, k - 1$) defines a canonical Poisson structure on the manifold *Osc***^k M*.

Proof. First, it is not difficult to see that for $\alpha = 0, 1, \ldots, k - 1$, ${f, g}_\alpha \in \mathcal{F}(Osc^{*k}M)$ and ${\{\tilde{f}, \tilde{g}\}_\alpha = {f, g}_\alpha.$

Indeed, by means of (1.2) we have

$$
\frac{\partial f}{\partial y^{(\alpha)i}} = \frac{\partial \tilde{y}^{(\alpha)m}}{\partial y^{(\alpha)i}} \frac{\partial \tilde{f}}{\partial \tilde{y}^{(\alpha)m}} + \frac{\partial \tilde{y}^{(\alpha+1)m}}{\partial y^{(\alpha)i}} \frac{\partial \tilde{f}}{\partial \tilde{y}^{(\alpha+1)m}} + \cdots \n+ \frac{\partial \tilde{y}^{(k-1)m}}{\partial y^{(\alpha)i}} \frac{\partial \tilde{f}}{\partial \tilde{y}^{(k-1)m}} + \frac{\partial \tilde{p}_m}{\partial y^{(\alpha)i}} \frac{\partial \tilde{f}}{\partial \tilde{p}_m} \n\frac{\partial g}{\partial p_i} = \frac{\partial x^i}{\partial \tilde{x}^s} \frac{\partial \tilde{g}}{\partial \tilde{p}_s}
$$

Using $(1.2')$, we can write first of the previous formulas as

$$
\frac{\partial f}{\partial y^{(\alpha)i}} = \frac{\partial \tilde{x}^m}{\partial x^i} \frac{\partial \tilde{f}}{\partial \tilde{y}^{(\alpha)m}} + \frac{\partial \tilde{y}^{(1)m}}{\partial x^i} \frac{\partial \tilde{f}}{\partial \tilde{y}^{(\alpha+1)m}} + \cdots + \frac{\partial \tilde{y}^{(k-1-\alpha)m}}{\partial x^i} \frac{\partial \tilde{f}}{\partial \tilde{y}^{(k-1)m}} + \frac{\partial \tilde{p}_m}{\partial y^{(\alpha)i}} \frac{\partial \tilde{f}}{\partial \tilde{p}_m}
$$

Now, taking into account the identities

$$
\frac{\partial \tilde{p}_m}{\partial y^{(\alpha)i}} = 0 \quad \text{for } \alpha \neq 0, \qquad \frac{\partial \tilde{p}_m}{\partial x^i} \frac{\partial x^i}{\partial \tilde{x}^s} = 0
$$

$$
\frac{\partial \tilde{y}^{(\beta)m}}{\partial x^i} \frac{\partial x^i}{\partial \tilde{x}_s} = \frac{\partial \tilde{y}^{(\beta)m}}{\partial \tilde{x}^s} = 0 \qquad \text{for } \beta = 1, 2, ..., k - 1
$$

we obtain

$$
\frac{\partial f}{\partial y^{(\alpha)i}} \frac{\partial g}{\partial p_i} = \frac{\partial \tilde{f}}{\partial \tilde{y}^{(\alpha)i}} \frac{\partial \tilde{g}}{\partial \tilde{p}_i}, \quad \text{for } \alpha = 0, \ldots, k-1; \quad y(0) = x
$$

Consequently,

$$
\{f, g\}_{\alpha} = \{\tilde{f}, \tilde{g}\}_{\alpha}
$$

Now it is not difficult to prove that the brackets $\{f, g\}_{\alpha}$ (i) are R-linear in every argument, (ii) are skew-symmetric: $\{f, g\}_\alpha = -\{g, f\}_\alpha$, and (iii) satisfy the Jacobi identities

 $\{ \{f, g\}_{\alpha}, h\}_{\alpha} + \{ \{g, h\}_{\alpha}, f\}_{\alpha} + \{ \{h, f\}_{\alpha}, g\}_{\alpha} = 0, \alpha = 0, 1, \ldots, k - 1$

and the mapping ${f, \cdot}_\alpha$: $\mathcal{F}(Osc^{*k}M) \to \mathcal{F}(Osc^{*k}M)$ is a derivation of the functions algebra $\mathcal{F}(Osc^{*k}M)$.

The previous theorems allow us to study Hamiltonian systems over the manifold *Osc***^k M*.

2. THE HAMILTONIAN SYSTEMS OF ORDER *k*

As usual [7], we set $\tilde{O}sc^{*k}M = Osc^{*k}M\setminus\{0\}$, where 0 means the zero section of the projection π^{*k} .

Definition 2.1. A mapping *H*: $Osc^{*k}M \rightarrow R$ is called a *differentiable Hamiltonian of order k* if *H* is a differentiable function on $\tilde{O}sc^{*k}M$, and it is continuous on the zero section.

Thus, if $H(u) = H(x, y^{(1)}, \ldots, y^{(k-1)}, p)$ is a function of the particle *x*, the accelerations of order 1, 2, ..., $k-1$, and the momenta p_i , it will be a differentiable Hamiltonian of order *k* if this function is differentiable on the manifold $\tilde{O}sc^{*k}M$; it is continuous at the points $(x, 0, \ldots, 0, 0)$.

Definition 2.2. A Hamiltonian system of order *k* is a triple $(Osc^{*k}M, \theta,$ *H*), where θ is a presymplectic structure on $Osc^{*k}M$ and *H* is a differentiable Hamiltonian on the manifold *Osc***^k M*.

In the particular case $k = 1$, where θ is the canonical symplectic structure over *T***M*, we have the classical Hamiltonian systems.

If θ is the presymplectic structure on $Osc^{*k}M$ given by (1.3.) and *H* is a differentiable Hamiltonian on *Osc***^k M*, we obtain an important Hamiltonian system, which can be studied by a method of Gotay [2]. In this case, the Poisson structure $\{\cdot\}_0$ will be considered. We follow here another way [11,12], introducing *k*-induced Hamiltonian systems ${E_\alpha, \theta_\alpha, H_\alpha}$ ($\alpha = 0, 1, \ldots$, $k - 1$) as follows.

Let us consider the section Σ_0 of the projection $Osc^{*k}M \rightarrow T^*M$ (from the above diagram), defined by

 $\Sigma_0 = \{ (x, y^{(1)}, \ldots, y^{(k-1)}, p) \in \text{Osc*}^k M | y^{(1)} = \cdots = y^{(k-1)} = 0 \}.$

It is an immersed submanifold of the manifold $Osc*kM$. We denote by H_0 the restriction to Σ_0 of a differentiable Hamiltonian *H* on $Osc^{*k}M$ and by θ_0 the restriction of the 2-form θ of (1.3). Of course, dim $\Sigma_0 = 2n$, θ_0 is a canonical symplectic structure, and H_0 is a differentiable Hamiltonian on Σ_0 . Consequently, the triple $(\Sigma_0, \theta_0, H_0)$ is a Hamiltonian system.

Now, we can prove the following:

Theorem 2.1:

1. The triple $(\Sigma_0, \theta_0, H_0)$ is a Hamiltonian system, θ_0 being a symplectic structure on Σ_0 .

2. There exists a unique vector field X_{H_0} determined by the equation

$$
i_{X_{H_0}} \theta_0 = -dH_0 \tag{2.1}
$$

3. The integral curves of the vector field X_{H_0} are given by the canonical equations

$$
\frac{dx^{i}}{dt} = \frac{\partial H_{0}}{\partial p_{i}}, \qquad \frac{dp_{i}}{dt} = -\frac{\partial H_{0}}{\partial x^{i}} \qquad \text{(on } \Sigma_{0}\text{)}\tag{2.2}
$$

4. The following equation holds:

$$
\{f, g\}_0 = \theta_0(X_f, X_g) \qquad \forall f, g \in \mathcal{F}(\Sigma_0)
$$
 (2.3)

where $\{f, g\}_0$ is the Poisson structure, (1.4).

The previous result is also valid for the Poisson structure $\{\cdot\}_\alpha$ ($\alpha = 1$, \ldots , $k - 1$).

Indeed, let Σ_{α} be the immersed submanifold of the fiber $(\pi^{*k})^{-1} (x_0) \subset$ $Osc^{*k}M$ in a fixed point $x_0 \in M$. Than Σ_{α} is defined by

$$
\Sigma_{\alpha} = \{ (x, y^{(1)}, y^{(2)}, \dots, y^{(k-1)}, p) \in Osc^{*k}M | (x = x_0, y^{(\beta)} = 0, \beta \neq \alpha, y^{(\alpha)} = y^{(\alpha)}, p = p) \quad (\alpha = 1, \dots, k - 1) \}
$$
\n(2.4)

Consequently, Theorem 2.1 can be proved for the Hamiltonian systems $(\Sigma_\alpha, \theta_\alpha, H_\alpha)$ where H_α is the restriction of the differentiable Hamiltonian $H(x, y^{(1)}, \ldots, y^{(k-1)}, p)$ to the submanifold Σ_{α} and

$$
\theta_{\alpha} = dp_i \wedge dy^{(\alpha)i}, \qquad \alpha = 1, \ldots, k-1 \tag{2.5}
$$

Obviously, denoting

$$
\omega_{\alpha} = p_i \, dy^{(\alpha)i} \qquad \alpha = 1, \ldots, k-1
$$

we have $k - 1$ 1-forms, every one being defined on the submanifold Σ_{α} . It follows that $\theta_{\alpha} = d\omega_{\alpha}$ ($\alpha = 1, \ldots, k - 1$).

As in the previous theorem, we have the following result:

Theorem 2.2:

1. For each ($\alpha = 1, \ldots, k - 1$), the triple (Σ_{α} , θ_{α} , H_{α}) is a Hamiltonian system, θ_{α} given by (1.4) being a symplectic structure on the submanifold Σ_{α} .

2. There exists a unique vector field $X_{H_{\alpha}}$ determined by the equation

Hamilton Spaces of Order $k \ge 1$ 2333

$$
i_{X_{H_{\alpha}}}\theta_{\alpha} = - dH_{\alpha} \tag{2.6}
$$

3. The integral curves of the vector field $X_{H_{\alpha}}$ are the "canonical equations"

$$
\frac{dy^{(\alpha)i}}{dt} = \frac{\partial H_{\alpha}}{\partial p_i}, \qquad \frac{dp_i}{dt} = -\frac{\partial H_{\alpha}}{\partial y^{(\alpha)i}} \qquad \text{(on } \Sigma_{\alpha} \text{)}\tag{2.7}
$$

4. The following equation holds:

$$
\{f, g\}_{\alpha} = \theta_{\alpha}(X_f, X_g) \qquad \forall f, g \in \mathcal{F}(\Sigma_{\alpha}) \tag{2.8}
$$

 ${f, g}_\alpha$ ($\alpha = 1, \ldots, k - 1$) being given by the Poisson structures (1.4).

Of course, this theory is valid in the case when the differentiable Hamiltonian of order *k*, *H*, is regular.

3. THE NOTION OF HAMILTON SPACE OF ORDER *k*

The Hessian matrix of a differentiable Hamiltonian of order k , $H(x, y⁽¹⁾)$, \ldots , $y^{(k-1)}$, *p*) with respect to the momenta p_i , has the enteries

$$
g^{ij} = \frac{1}{2} \frac{\partial^2 H}{\partial p_i \partial p_j} \qquad \text{on} \quad \tilde{O}sc^{*k}M \tag{3.1}
$$

We can prove without difficulty that g^{ij} is a distinguished contravariant symmetric tensor field.

We say that *H* is regular if

$$
\text{rank } \|g^{ij}\| = n = \dim M, \qquad \text{on} \quad \tilde{O}sc^{*k}M \tag{3.1'}
$$

Definition 3.1. A Hamilton space of order k ($k \in \mathbb{N}^*$) is a pair $H^{(k)n}$ = $(M, H(x, y^{(1)}, \ldots, y^{(k-1)}, p))$ formed by a smooth, real, *n*-dimensional manifold *M* and a differentiable regular Hamiltonian *H* of order *k*, for which the *d*tensor field *gij* has a constant signature on *Osc***^k M*.

It is easy to prove the following:

Theorem 3.1. If the base manifold M is paracompact, then on the manifold $Osc*kM$ there exist Hamiltonians *H* such that the pairs (M, H) are Hamilton spaces of order *k*.

Example. Let $F^{(k-1)n} = (M, F (x, y^{(1)}, \ldots, y^{(k-1)}))$ be a Finsler space of order $k - 1$ [8]. *F* exists if *M* is a paracompact manifold. If $a_{ij}(x, y^{(1)}, \ldots)$, $y^{(k-1)}$) is the fundamental tensor field of the space $F^{(k-1)n}$, then

$$
H(x, y^{(1)}, \ldots, y^{(k-1)}, p) = a^{ij}(x, y^{(1)} \ldots, y^{(k-1)}) p_i p_j \qquad (3.2)
$$

where a^{ij} is the contravariant tensor associated with a_{ii} , is the fundamental function of a Hamilton space of order *k*.

For a Hamilton space $H^{(k)n} = (M, H)$, *H* is called the fundamental function and g^{ij} its fundamental tensor field.

The geometry of the Hamilton spaces of order *k* can be studied as a natural extension of the geometry of Hamilton space of order 1 [1, 4, 5, 10]. Some special classes of spaces $H^{(k)n}$ are as follows.

- 1. The Riemannian spaces $H^{(k)n} = (M, H)$ defined as spaces $H^{(k)n}$ for which the fundamental function $H(x, y^{(1)}, \ldots, y^{(k-1)}, p)$ is 2homogeneous with respect to p_i and its fundamental tensor field g^{ij} does not depend on the variables p_i . We denote them by $\mathcal{R}^{(k)n}$.
- 2. The Cartan spaces of order *k* are the Hamilton spaces of order *k*, for which the fundamental function *H* is 2-homogeneous with respect to the momenta p_i . We denote them by $\mathcal{C}^{(k)n} = (M, H(x, y^{(1)}, \ldots, y^{(k)}))$ $y^{(k-1)}$, *p*)).

A more general class of spaces is given by the generalized Hamilton spaces of order *k*.

They are defined as pairs $GH^{(k)n} = (M, g^{ij}(x, y^{(1)}, \ldots, y^{(k-1)}, p_i))$, where g^{ij} is a distinguished tensor fields [9] which has the properties that rank $||g^{ij}||$ $= n$ on $\tilde{O}sc^{*k}M$ and g^{ij} has a constant signature.

Example. If $\gamma^{ij}(x)$ is the contravariant tensor of the metric tensor $\gamma_{ij}(x)$ of a Riemannian space on the manifold *M* and $n(x, y^{(1)}, \ldots, y^{(k-1)}, p)$ 1 is a function (refractive index) on $Osc^{*k} M$, then the spaces $GH^{(k)n} =$ (M, g^{ij}) , with

$$
g^{ij}(x, y^{(1)}, \dots, y^{(k-1)}, p) = \gamma^{ij}(x) + \left(1 - \frac{1}{n^2(x, y^{(1)}, \dots, y^{(k-1)}, p)}\right) p^i p^j \quad (3.3)
$$

where $p^i = \gamma^{ij}(x)p_j$, are generalized Hamilton spaces of order *k*.

For the space $GH^{(k)n}$ there is no fundamental function *H* such that $g^{ij} =$ $rac{1}{2}$ $\partial^2 H/\partial p_i \partial p_j$.

The spaces $GH^{(k)n}$ were suggested by Synge's metric of relativistic optics [9].

Evidently, the previous classes of Hamilton spaces satisfy the inclusions

$$
\{\mathcal{R}^{(k)n}\}\subset \{\mathcal{C}^{(k)n}\}\subset \{H^{(k)n}\}\subset \{GH^{(k)n}\}
$$

Similar inclusions hold for the Lagrange spaces of order *k* [7]:

$$
\{\Re^{(k)n}\}\subset \{F^{(k)n}\}\subset \{L^{(k)n}\}\subset \{GL^{(k)n}\}
$$

where $F^{(k)n}$ are Finsler spaces of order k [8].

The relation between the Lagrange spaces of order *k*,

Hamilton Spaces of Order $k \ge 1$ 2335

$$
L^{(k)n} = (M, L(x, y^{(1)}, \ldots, y^{(k-1)}, y^{(k)}))
$$

and the Hamilton spaces of order *k*, $H^{(k)n} = (M, H(x, y^{(1)}, \ldots, y^{(k-1)}, p))$, is given by the Legendre mapping Leg: $L^{(k)n} \to H^{(k)n}$ defined by

Leg:
$$
(x, y^{(1)}, \dots, y^{(k-1)}, y^{(k)})
$$

\n $\in Osc^kM \to (x, y^{(1)}, \dots, y^{(k-1)}, p) \in Osc^{*k}M$ (3.4)

where

$$
p_i = \frac{1}{2} \frac{\partial L}{\partial y^{(k)i}} \tag{3.4'}
$$

We have the following result:

Theorem 3.2. The Legendre mapping Leg given by (3.4) and $(3.4')$ is a local diffeomorphism between the total spaces of Lagrange space $L^{(k)n}$ and the Hamilton space $H^{(k)n}$.

Indeed, the determinant of the Jacobian matrix of the mapping Leg coincides with the determinant of the matrix $||a_{ij}||$, where $a_{ij}(x, y^{(1)}, \ldots, y^{(k)})$ is the fundamental tensor of the space $L^{(k)n}$. QED

Consequently, one can study the geometry of the Hamilton spaces of order *k* directly as an extension of the case $k = 1$ and by using the Legendre transformations (3.4), (3.4') since the geometry of the spaces $L^{(k)n}$ is known [7].

4. CONCLUSIONS

The Lagrange spaces of order $k \ge 1$, $L^{(k)n} = (M, L (x, y^{(1)}, \ldots, y^{(k)})),$ are defined by the regular Lagrangians *L* which depend on points *x* of the configuration space *M* and accelerations $y^{(1)}$, ..., $y^{(k)}$ of order 1, ..., *k*, respectively [7]. The space $L^{(k)n}$ is a natural extension of the notion of Lagrange space of order 1, $L^n = (M, L(x, y))$.

The problem is to construct the dual notion of Hamilton space of order k , $H^{(k)n} = (M, H)$. It must have the following properties:

- 1. dim $L^{(k)n} = \dim H^{(k)n}$.
- 2. On $H^{(k)n}$ there exist a canonical presymplectic structure and a canonical Poisson structure.
- 3. There exists a local diffeomorphism between the total spaces of $L^{(k)n}$ and $H^{(k)n}$.

The "dual space" of $L^{(k)n}$ obtained by means of Jacobi–Ostrogradski momenta [3, 7] does not satisfy the previous strong conditions.

In the present paper this problem is solved by means of the fibered bundle (1.1), where $(Osc^{k-1} M, \pi^{k-1}, M)$ is the $(k-1)$ -osculator bundle (or $k-1$ acceleration bundle) and (T^*M, π^*, M) is the cotangent bundle of the manifold *M*.

The main results concerning the dual of a *k*-osculator bundle, Hamiltonian systems of order *k*, and Hamilton spaces of order *k*, as well as the Legendre transformation, are given by Theorems 1.1, 1.2, 2.1, 2.2, and 3.2.

The geometry of the Hamilton spaces of order *k* is a natural extension of the known geometry of Hamilton space $H^n = (M, H(x, p))$ taking into account the Legendre mapping (3.4) , $(3.4')$. Applications in analytical mechanics of the higher order Lagrangians can be done starting from Examples 3.2 and 3.3.

REFERENCES

- 1. P. L. Antonelli and R. Miron, eds., *Lagrange and Finsler Geometry. Applications to Physics and Biology* (Kluwer, Dordrecht, 1996).
- 2. M. Gotay, Presymplectic manifolds, geometric constraints theory and the Dirac–Bergman theory of constraints, Doctoral Thesis, University of Maryland (1979).
- 3. M. De Léon and P. Rodriguez, *Generalized Classical Mechanics and Field Theory* (North-Holland, Amsterdam, 1985).
- 4. R. Miron, (1988), *C. R. Acad. Sci. Paris Ser. II* **306**, 195–198.
- 5. R. Miron, (1989), *An. s¸t. Univ. Ias¸i I Mat.* **35**, 38–85.
- 6. R. Miron, (1995), *Int. J. Theor. Phys.* **34**, 1123–1146.
- 7. R. Miron, *The Geometry of Higher-Order Lagrange Spaces. Applications to Mechanics and Physics* (Kluwer, Dordrecht, 1997).
- 8. R. Miron, *The Geometry of Higher-Order Finsler Spaces* (Hadronic Press, 1998).
- 9. R. Miron and M. Anastasiei, *The Geometry of Lagrange Spaces: Theory and Applications* (Kluwer, Dordrecht, 1994).
- 10. R. Miron, D. Hrimiuc, S. Sabău and H. Shimada, *The Geometry of Hamilton and Lagrange Spaces*, (to appear in Kluwer, Dordrecht).
- 11. I. Vaisman, *Symplectic Geometry and Secondary Characteristic Classes* (Birkhäuser, Basel, 1987).
- 12. I. Vaisman, *Lectures on the Geometry of Poisson Manifolds* (Birkhäuser, Basel, 1994).