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A suitable “dual” for the k-acceleration bundle (T M, w*, M) is the fibered
bundie (T*M X,, T*M). The mentioned bundle carries a canonical
pre@/mplectic structure and k canonical Poisson structures. By means of this

“dual” we define the notion of Hamilton spaces of order k, whose total space
consists of points x of the configuration space M, accelerations of order 1, ...,
k—1,y® ..., y* 3 and momenta p. Some remarkable Hamiltonian systems
are poi nted out There exists a Legendre mapping from the Lagrange spaces of
order k to the Hamilton space of order k.

INTRODUCTION

The notion of a Hamilton space was introduced by the author in refs.
4 and 5. It refers to a pair H" = (M, H(x, p)), where M is a smooth n-
dimensiona manifold and H is a regular Hamiltonian, that is, a smooth
function on the cotangent manifold T*M, whose Hessian with respect to the
momentap; is nonsingular. The space H" has a canonical symplectic structure
and, accordingly, acanonical Poisson structure. Theregularity of the Hamilto-
nian H allows us to view the space H" as the dual, via a Legendre mapping,
of aLagrange space L" = (M, L(x, ¥)) [1, 5, 8, 10].

The notion of Lagrange space of higher order k = 1, L®" = (M, L),
was defined some years ago [7], L being a regular Lagrangian of order k.
But up to now no definition for the notion of higher order Hamilton space
has been proposed. The reason is that it is not simple to find a dual of a
Lagrange space of order k, L®". Here, duality is not algebraic, but refers
to the existence of a loca diffeomorphism (a Legendre mapping) between
two spaces.

1Faculty of Mathematics, “Al. |. Cuza® University lasi, lasi 6600, Romania; e-mail:
rmiron@uaic.ro

2327
0020-7748/00/0900-2327$18.00/0 © 2000 Plenum Publishing Corporation



2328 Miron

In the present paper we propose a suitable “dua” of the k-acceleration
bundle TKM. This is the fibered bundle T<"*TM X,, T*M over M. We show
that the total space of the latter has a canonical presymplectic structure as
well as k canonical Poisson structures. Thus the notion of a higher order
Hamiltonian space appears in a natural way. It is a pair HYO" = (M, H),
where H: T<"ILM X\, T*M - Risaregular Hamiltonian depending on the
pointx € M, theaccelerationsof order 1,2,. .., k— 1,y ..., y& 9 andthe
momentap e T*M. The spaces H®" have the following important properties:

@ dimH® = dim Lon,

() H®" has a canonical presymplectic structure and a number k of
canonical Poisson structures.

(c) The spaces H®" and L®" are local diffeomorphic, via a Le-
gendre transformation.

Of course, these properties hold in the case k = 1. The geometry of the
Hamilton spaces of order k = 1 is a natural extension of the geometry of
Hamilton spaces H" = (M, H(x, p)).

1. THE DUAL OF THE k-OSCULATING BUNDLE

Let M be areal, C*-differentiable manifold M of dimension n and (TM,
m, M), (T*M, &*, M) its tangent and cotangent bundle, respectively. We
consider the bundle of accelerations of order k, (T*M, =¥, M), which is
identified with the osculating bundle of order k, (OscM, =%, M) [8]. The

points u € Osc'M are of the form u = (x, y&, .. ., y®) with the canonical
coordinates (X, y', . .., y®). Latin indices i, j, k, ... run over the set {1,
2, ..., n}, and the summation convention will be used.

For the bundles (Osck" M, w71, M) and (T*M, w*, M) the fibered
product

(OsEIM Xy T*M, 7K M) (L1)

can be considered. The projection 7** Osc**"M - M, where Osc*{IM =
Osck™IXM Xy, T*M, is given by m*X(x, y®, ..., y& D p) = x. The points
(X, p) belong to the manifold T*M and their local coordinate are (X, p).

Thus, apoint u = (x, Y9, ..., y& D p) € Osc**M consists of a point
X, accelerations yV, ..., y& D of order 1, ..., k — 1, and a momentum p
(using terms from in analytical mechanics).

The manifold Osc*M will be called the “dual space” of the total space
of the k-osculating bundle Osc"M. We say that OscM and Osc*“M are dual
to each other since between them there exists alocal Legendre diffeomorph-
ism. In this sense and not in an algebraic one, we say that the bundle (Osc* kM,
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w*k M) is dual to the bundle (Osck, 7%, M). For k = 1, (Osc**M, w*1, M)
is identified with the cotangent bundle (T*M, m*, M).

The following diagram, where the arrows indicate natural projections,
is commutative:

Osc*kM
v N
Osc 1M ! ™M
N v
M

A change of local coordintes on the manifold Osc*“M is given by

%= %A, LX), det(a—x.> £0
ax!
St
gi = X 1
y 9 y
I vIG oy
e (k= Dy = yaxi YOI + o 4 (k — 1) %y« D (1.2)
o ox
P = % Pi

and the following identities hold [7]:

ay(a)i ay(cﬁ-l) ag’,(k—l)i
T ayd T gyt 8

=0,...,k—2 yO=x

(1.2')

Using formulas (1.2), we can introduce the following differential forms on
the manifold Osc*kM:

o = p; dx (1.3)
0 = do = dp, OdxX
From (1.2) it followsthat p, d% = p; dx'. Thusthefollowing assertionsare clear.

Theorem 1.1.

1. The forms » and § are globally defined on Osc**M.

2.do = 0, rank]|]| = 2n.

3. 0 isacanonical presymplectic structure on the manifold Osc* M.

Let us consider the systems of Poisson brackets: for any f, g € F
(Osc**M),
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of ag og of

R R =01...,k—1 yo-=
ay(a)l Gp, ay(a)l apiy o 01 ’ ) ’ y( X

{f.g.=

(1.4)

Theorem 1.2. Every bracket{-}, (o« = 0, ..., k — 1) defines a canonical
Poisson structure on the manifold Osc*“M.

Proof. Firgt, it is not difficult to see that for « = 0, 1, ..., k — 1,
{f.ga & F(Osc'M) and {1, Go = {, g}a-
Indeed, by means of (1.2) we have
of _ay®m of  ayervm of
ay(a)i ay(oc)i ay(a)m ay(oc)i ay(oc+1)m

gytk=dm  of P o

ay(a)i as‘,(kfl)m ay((x)i aﬁm
89 _ X &g
ap 9% IPs

Using (1.2"), we can write first of the previous formulas as
of  axm of L oo of N
ay(a)i - & ay((x)m X ay(a+l)m
L of OPm  of

axi ay(k— Dm ay(tx)i apm

Now, taking into account the identities

OPm _ P X _
ay(&)i—o for o # 0, Wa—y(s—
FBIM gy AB)m
636’; j—gszafis -0 for B=12....k-1

we obtain
of ag _ of oy
Iyl ap oY opy’
Consequently,

fora=0,..., k=1, y0) =x

{f. g ={F. 0
Now it is not difficult to prove that the brackets { f, g}, (i) are R-linear in
every argument, (i) are skew-symmetric: { f, g}, = —{0, f}, and (iii) satisfy
the Jacobi identities
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{f.gw e+ {{g Mo o + {0 GBea=0 a=01.... k-1

and the mapping {f, ‘}.: F(Osc**M) - F(Osc*“M)is a derivation of the
functions algebra %(Osc**M).

The previous theorems allow us to study Hamiltonian systems over the
manifold Osc*kM.

2. THE HAMILTONIAN SYSTEMS OF ORDER k

As usual [7], we set Osc**M = Osc**M\{0}, where O means the zero
section of the projection m*,

Definition 2.1. A mapping H: Osc**M - R is called a differentiable
Hamiltonian of order k if H is a differentiable function on Osc**M, and it
is continuous on the zero section.

Thus, if H(U) = H(x, Y9, ..., ¥ p) is afunction of the particle x,
the accelerations of order 1, 2, ..., k — 1, and the momenta p;, it will be
a differentiable Hamiltonian of order k if this function is differentiable on
the manifold Osc*4M; it is continuous at the points (x, O, ..., 0, 0).

Definition 2.2. A Hamiltonian system of order k is a triple (Osc*4M, 6,
H), where 0 is a presymplectic structure on Osc**M and H is a differentiable
Hamiltonian on the manifold Osc*“M.

Inthe particular casek = 1, where 6 isthe canonical symplectic structure
over T*M, we have the classica Hamiltonian systems.

If  is the presymplectic structure on Osc*“M given by (1.3.) and H is
adifferentiable Hamiltonian on Osc*“M, we obtain an important Hamiltonian
system, which can be studied by a method of Gotay [2]. In this case, the
Poisson structure{ -} o will be considered. Wefollow here another way [11,12],
introducing k-induced Hamiltonian systems {E,, 6., H,} (¢ = 0, 1, ...,
k — 1) as follows.

Let us consider the section X, of the projection Osc**M - T*M (from
the above diagram), defined by

So={(x YD, ..., ¥« D p) e Osct"M[y® = -+ = yk-D = O},

It is an immersed submanifold of the manifold Osc**M. We denote by Hg
the restriction to X, of a differentiable Hamiltonian H on Osc*M and by 6,
the restriction of the 2-form 6 of (1.3). Of course, dim 25 = 2n, 0y is a
canonical symplectic structure, and Hy is a differentiable Hamiltonian on 2.
Consequently, the triple (X, 8o, Ho) is a Hamiltonian system.

Now, we can prove the following:

Theorem 2.1:
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1. Thetriple (2o, 60, Ho) is aHamiltonian system, 6, being a symplectic
structure on .
2. There exists a unique vector field X, determined by the equation

ixHOeo = _dHo (21)
3. The integral curves of the vector field X, are given by the canoni-

cal equations
X _aHo  dp_ _dHo

d  op ot P (on %o) (22)

4. The following equation holds:
{1, dto = 00(Xs, Xg) Of, g € F(0) (2.3)
where { f, g}, is the Poisson structure, (1.4).

The previous result is also valid for the Poisson structure {-},, (o = 1,
oo k—=1).

Indeed, let 3, be the immersed submanifold of the fiber (m*¥)~* (x) C
Osc*kM in a fixed point X, € M. Than 2, is defined by

o ={0y®, y2, ...y D p)
e OSC*M|(X = X, Y® = 0, B # a, Y@ =y, p = p)
@=1,... k- 1)} 2.4)

Consequently, Theorem 2.1 can be proved for the Hamiltonian systems
(Zar 94, H,) where H, is the restriction of the differentiable Hamiltonian
H(x, Y, ..., ¥, p) to the submanifold =, and

0, = dp; O dy@), a=1...,k—-1 (2.5)
Obvioudly, denoting
0, = P dy@) a=1,...,k—1

we have k — 1 1-forms, every one being defined on the submanifold Z,,. It

follows that 6, = dw, (@« = 1, ...,k — 1).
As in the previous theorem, we have the following result:
Theorem 2.2:

1. Foreach(a =1,...,k— 1), thetriple (2., 0,, H,) isaHamiltonian
system, 6, given by (1.4) being a symplectic structure on the submanifold ..
2. There exists a unique vector field X, determined by the equation
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i, 0 = — dH, (2.6)

3. The integral curves of the vector field X, are the “canonical
equations”

Yo-f Bt ex) e
4. The following equation holds:
{f.gle = 0%, X9  DOfige FE (2.8)
{f,gla (@ =1,...,k— 1) being given by the Poisson structures (1.4).

Of course, thistheory isvalid in the case when the differentiable Hamilto-
nian of order k, H, is regular.

3. THE NOTION OF HAMILTON SPACE OF ORDER k

The Hessian matrix of a differentiable Hamiltonian of order k, H(x, y¥,
..., Y&, p) with respect to the momenta p;, has the enteries
-1 oH ~
ij — = x K
g 2 opop, on Osc**M (3.1
We can prove without difficulty that ¢! is a distinguished contravariant
symmetric tensor field.
We say that H is regular if

rank |gil = n =dimM, on Osc*kM (3.1)

Definition 3.1. A Hamilton space of order k (k € N*) is a pair HW" =
(M, H(x, y©, . .., ¥ p)) formed by asmooth, real, n-dimensional manifold
M and a differentiable regular Hamiltonian H of order k, for which the d-
tensor field g has a constant signature on Osc* <M.

It is easy to prove the following:

Theorem3.1. If the base manifold M is paracompact, then on the manifold
Osc*kM there exist Hamiltonians H such that the pairs (M, H) are Hamilton
spaces of order k.

Example. Let F& 9" = (M, F (x, Y, ..., y& 1)) be a Finder space
of order k — 1[8]. F existsif M is a paracompact manifold. If a;(x, y®, . ..
, YD) is the fundamental tensor field of the space F&~ 9", then

Hx, YO, ...,y D p) =al (x, yP ...y« D)pip; (3.2

where a’ is the contravariant tensor associated with &;, is the fundamental
function of a Hamilton space of order k.
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For a Hamilton space H®" = (M, H), H is called the fundamental
function and g' its fundamental tensor field.

The geometry of the Hamilton spaces of order k can be studied as a
natural extension of the geometry of Hamilton space of order 1[1, 4, 5, 10].

Some special classes of spaces HY" are as follows.

1. The Riemannian spaces H®" = (M, H) defined as spaces H®"
for which the fundamental function H(x, y&, ..., y& ™, p) is 2-
homogeneous with respect to p; and its fundamental tensor field g
does not depend on the variables p,. We denote them by R®",

2. The Cartan spaces of order k are the Hamilton spaces of order k,
for which thefundamental function H is2-homogeneouswith respect
to the momenta p,. We denote them by €®" = (M, H(x, Y9, ...,

YU, p).

A more general class of spaces is given by the generalized Hamilton
spaces of order k.

They are defined as pairs GH®" = (M, g’ (x, Y&, ..., y& 9, 1)), where
g’ is a distinguished tensor fields [9] which has the properties that rank|g"|
= n on Osc**M and g has a constant signature.

Example. If y(x) is the contravariant tensor of the metric tensor v;(X)
of a Riemannian space on the manifold M and n(x, y&, ..., y& 3, p) >
1 is a function (refractive index) on Osc** M, then the spaces GH®" =
(M, g'), with

gij(X’ y(l)! e !y(k71)1 p) = ’Yij(X) + (1 - nZ(X, y(l), . l , y(k—l): p)> pipj (33)

where p' = y(x)p;, are generalized Hamilton spaces of order k.

For the space GH®" there is no fundamental function H such that g/ =
+ 9?Hlapap;.

The spaces GH®" were suggested by Synge's metric of relativistic
optics [9].

Evidently, the previous classes of Hamilton spaces satisfy the inclusions

{ROM C (€W C {HOY C {GH®W}
Similar inclusions hold for the Lagrange spaces of order k [7]:
{ROM C {FOM C {LOY C {GLMY

where F®" are Finder spaces of order k [8].
The relation between the Lagrange spaces of order k,
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LOM = (M, L(x, YO, ..., y&, y9))
and the Hamilton spaces of order k, H®" = (M, H(x, Y, ..., y& D, p), is
given by the Legendre mapping Leg: L®" . H®" defined by
Leg: (x Y9, ..., Y9, y¥)
e Ost'M - (%, Y&, ..., ¥* D p) e Osc**M (3.4)
where

1 4L

Pi= 55y (34)

We have the following result:

Theorem 3.2. The Legendre mapping Leg given by (3.4) and (3.4') is
alocal diffeomorphism between the total spaces of Lagrange space L®" and
the Hamilton space H®",

Indeed, the determinant of the Jacobian matrix of the mapping Leg
coincides with the determinant of the matrix |la;ll, where a;(x, y®, ..., y®)
is the fundamental tensor of the space L®W".  QED

Consequently, one can study the geometry of the Hamilton spaces of
order k directly as an extension of the case k = 1 and by using the Legendre
transformations (3.4), (3.4') since the geometry of the spaces L®" is
known [7].

4. CONCLUSIONS

The Lagrange spaces of order k = 1, L®" = (M, L (x, y&, ..., y®)),
are defined by the regular Lagrangians L which depend on points x of the
configuration space M and accelerations y&, ..., y® of order 1, ..., K,

respectively [7]. Thespace L®¥"isanatural extension of the notion of Lagrange
space of order 1, L" = (M, L (X, V).

The problem is to construct the dual notion of Hamilton space of order
k, HWO" = (M, H). It must have the following properties:

1. dim L& = dim H®",

2. OnH®"thereexist acanonical presymplectic structure and acanoni-
cal Poisson structure.

3. There exists a local diffeomorphism between the total spaces of
L®" and H®N,

The “dual space” of L®" obtained by means of Jacobi—Ostrogradski
momenta [3, 7] does not satisfy the previous strong conditions.
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In the present paper this problem is solved by means of the fibered
bundle (1.1), where (Osc<"* M, wk~1, M) isthe (k — 1)-osculator bundle (or
k — 1 acceleration bundle) and (T*M, w*, M) is the cotangent bundle of the
manifold M.

The main results concerning the dual of a k-osculator bundle, Hamilto-
nian systems of order k, and Hamilton spaces of order k, as well as the
Legendre transformation, are given by Theorems 1.1, 1.2, 2.1, 2.2, and 3.2.

The geometry of the Hamilton spaces of order k is a natural extension
of the known geometry of Hamilton space H" = (M, H(x, p)) taking into
account the Legendre mapping (3.4), (3.4"). Applications in analytical
mechanics of the higher order Lagrangians can be done starting from Exam-
ples 3.2 and 3.3.

REFERENCES

1. P.L.Antonelli and R. Miron, eds., Lagrange and Finsler Geometry. Applicationsto Physics
and Biology (Kluwer, Dordrecht, 1996).
2. M. Gotay, Presymplectic manifolds, geometric constraints theory and the Dirac—Bergman
theory of constraints, Doctoral Thesis, University of Maryland (1979).
M. De Léon and P. Rodriguez, Generalized Classical Mechanics and Field Theory (North-
Holland, Amsterdam, 1985).
. R. Miron, (1988), C. R. Acad. <ci. Paris Ser. 11 306, 195-198.
. R. Miron, (1989), An. st. Univ. lasi | Mat. 35, 38—85.
. R. Miron, (1995), Int. J. Theor. Phys. 34, 1123-1146.
. R. Miron, The Geometry of Higher-Order Lagrange Spaces. Applications to Mechanics
and Physics (Kluwer, Dordrecht, 1997).
. R. Miron, The Geometry of Higher-Order Finsler Spaces (Hadronic Press, 1998).
9. R. Miron and M. Anastasiei, The Geometry of Lagrange Spaces: Theory and Applications
(Kluwer, Dordrecht, 1994).
10. R. Miron, D. Hrimiuc, S. Sabau and H. Shimada, The Geometry of Hamilton and Lagrange
Soaces, (to appear in Kluwer, Dordrecht).
11. 1. Vaisman, Symplectic Geometry and Secondary Characteristic Classes (Birkhauser,
Basel, 1987).
12. 1. Vaisman, Lectures on the Geometry of Poisson Manifolds (Birkhauser, Basel, 1994).

No s W

©



